Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus.

نویسندگان

  • Suzanne M Appleyard
  • Daniel Marks
  • Kazuto Kobayashi
  • Hideyuki Okano
  • Malcolm J Low
  • Michael C Andresen
چکیده

Brainstem A2/C2 neurons are catecholamine (CA) neurons within the solitary tract nucleus (NTS) that influence many homeostatic functions, including cardiovascular reflexes, food intake, and stress. Because NTS is a major interface between sensory visceral afferents and the CNS, NTS CA neurons are ideally suited to coordinate complex responses by their projections to multiple brain regions. To test how NTS CA neurons process visceral afferent information carried by solitary tract (ST) afferents, we identified CA neurons using transgenic mice expressing TH-EGFP (enhanced green fluorescent protein under the control of the tyrosine hydroxylase promoter) and recorded synaptic responses to ST activation in horizontal slices. ST shocks evoked large-amplitude, short-latency, glutamatergic EPSCs (ST-EPSCs) in 90% of NTS CA neurons. Within neurons, ST-EPSCs had constant latency, rarely failed, and depressed substantially at high ST frequencies, indicating that NTS CA neurons receive direct monosynaptic connections from afferent terminals. NTS CA neurons received direct ST inputs from only one or two afferent fibers, with one-half also receiving smaller amplitude indirect inputs. Up to 90% of ST shocks evoked action potentials in NTS CA neurons. However, transmission of sensory afferent information through NTS CA neurons critically depended on the expression of an A-type potassium current (I(KA)), which when active attenuated ST-activated action potentials to a 37% success rate. The satiety peptide, cholecystokinin, presynaptically facilitated glutamate transmission in one-half of NTS CA neurons. Thus, NTS CA neurons are directly driven by visceral afferents with output being modulated by presynaptic peptide receptors and postsynaptic potassium channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ghrelin inhibits visceral afferent activation of catecholamine neurons in the solitary tract nucleus.

Brainstem A2/C2 catecholamine (CA) neurons in the solitary tract nucleus (NTS) are thought to play an important role in the control of food intake and other homeostatic functions. We have previously demonstrated that these neurons, which send extensive projections to brain regions involved in the regulation of appetite, are strongly and directly activated by solitary tract (ST) visceral afferen...

متن کامل

Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs.

Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are ...

متن کامل

Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids.

The nucleus tractus solitarius (NTS) receives dense terminations from cranial visceral afferents, including those from the gastrointestinal (GI) system. Although the NTS integrates peripheral satiety signals and relays this signal to central feeding centers, little is known about which NTS neurons are involved or what mechanisms are responsible. Proopiomelanocortin (POMC) neurons are good candi...

متن کامل

Convergence of cranial visceral afferents within the solitary tract nucleus.

Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic c...

متن کامل

Obesity, Diabetes and Energy Homeostasis High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs

Roberts BL, Zhu M, Zhao H, Dillon C, Appleyard SM. High glucose increases action potential firing of catecholamine neurons in the nucleus of the solitary tract by increasing spontaneous glutamate inputs. Am J Physiol Regul Integr Comp Physiol 313: R229–R239, 2017. First published June 14, 2017; doi:10.1152/ajpregu.00413. 2016.—Glucose is a crucial substrate essential for cell survival and funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 48  شماره 

صفحات  -

تاریخ انتشار 2007